115TH CONGRESS 1ST SESSION	S.	

To direct the Secretary of Energy to establish a program to advance energy storage deployment by reducing the cost of energy storage through research, development, and demonstration, and for other purposes.

IN THE SENATE OF THE UNITED STATES

	introduced the	following	bill;	which	was	read	twice
and referred to	the Committee	on					

A BILL

To direct the Secretary of Energy to establish a program to advance energy storage deployment by reducing the cost of energy storage through research, development, and demonstration, and for other purposes.

- 1 Be it enacted by the Senate and House of Representa-
- ${\it 2\ tives\ of\ the\ United\ States\ of\ America\ in\ Congress\ assembled},$
- 3 SECTION 1. SHORT TITLE.
- 4 This Act may be cited as the "Reducing the Cost of
- 5 Energy Storage Act of 2017".
- 6 SEC. 2. DEFINITIONS.
- 7 In this Act:
- 8 (1) DER.—

1	(A) IN GENERAL.—The term "DER"
2	means an electric device that can produce or
3	consume energy that is located—
4	(i) on the distribution system or any
5	subsystem of the distribution system; or
6	(ii) behind a customer meter.
7	(B) Inclusions.—The term "DER" in-
8	cludes—
9	(i) an energy storage resource;
10	(ii) an energy generation technology;
11	(iii) a demand response resource;
12	(iv) an energy efficiency resource;
13	(v) an electric vehicle and associated
14	supply equipment and systems; and
15	(vi) aggregations and integrated con-
16	trol systems, including virtual power
17	plants, microgrids, and networks of
18	microgrid cells.
19	(2) Electric consumer; state regulatory
20	AUTHORITY.—The terms "electric consumer" and
21	"State regulatory authority" have the meanings
22	given the terms in section 3 of the Public Utility
23	Regulatory Policies Act of 1978 (16 U.S.C. 2602).
24	(3) Energy storage.—The term "energy
25	storage" means equipment or facilities capable of

1	absorbing energy, storing energy for a period of
2	time, and dispatching the stored energy, that—
3	(A) uses mechanical, electrochemical, hy
4	droelectric, or thermal processes, as a single fa
5	cility or as an aggregation of units, throughout
6	the electric grid, including behind the meter to
7	store energy generated at 1 time for use at a
8	later time;
9	(B) uses mechanical, electrochemical, hy
10	droelectric, or thermal processes, as a single fa
11	cility or as an aggregation of units, throughou
12	the electric grid, including behind the meter to
13	store energy generated from mechanical proc
14	esses that would otherwise be wasted for deliv
15	ery at a later time; or
16	(C) stores thermal energy for direct use for
17	heating or cooling at a later time in a manner
18	that avoids the need to use electricity at that
19	later time.
20	(4) Light-duty consumer vehicle.—The
21	term "light-duty consumer vehicle" has the meaning
22	given the term "light-duty vehicle" in section
23	1037.801 of title 40, Code of Federal Regulations
24	(as in effect on the date of enactment of this Act)

(5) Microgrid.—The term "microgrid" means
a localized grid that can disconnect from the tradi-
tional grid to operate autonomously and help miti-
gate grid disturbances to strengthen grid resilience
(6) Program.—The term "program" means
the energy storage program established under sec-
tion 3(a).
(7) Secretary.—The term "Secretary" means
the Secretary of Energy.
(8) State energy office.—The term "State
energy office" has the meaning given the term in
section 124(a) of the Energy Policy Act of 2005 (42
U.S.C. 15821(a)).
(9) Transit vehicle.—The term "transit vehicle.
hicle" has the meaning given the term "bus" in sec-
tion 1192.3 of title 36, Code of Federal Regulations
(as in effect on the date of enactment of this Act)
SEC. 3. REDUCING THE COST OF ENERGY STORAGE.
(a) Energy Storage Program.—
(1) Establishment.—Not later than 1 year
after the date of enactment of this Act, the Sec-
retary shall establish a cross-cutting national pro-
gram within the Department of Energy to advance
energy storage deployment by reducing the cost of

1	energy storage through research, development, and
2	demonstration.
3	(b) Goals.—In developing the program, the Sec-
4	retary shall consider the goals of—
5	(1)(A) reducing the full lifecycle cost and envi-
6	ronmental impact of energy storage technologies,
7	services, and applications, with an emphasis on re-
8	ducing costs associated with combining energy stor-
9	age with intermittent renewable energy generation;
10	and
11	(B) increasing the cost-competitiveness of en-
12	ergy storage technologies, services, and applications,
13	including—
14	(i) the costs of subsystem components, in-
15	stallation, and integration; and
16	(ii) the costs associated with the applica-
17	tion of energy storage technologies within inte-
18	grated control systems;
19	(2) facilitating innovation in the manner in
20	which energy storage systems are conceived, de-
21	signed, manufactured, installed, and used for various
22	energy services;
23	(3) improving the understanding of the econom-
24	ics and technical characteristics of new electric grid

1	operating principles enabled by energy storage, in-
2	cluding by considering regional characteristics;
3	(4)(A) identifying the various use cases that are
4	possible with energy storage (including individual
5	technology applications, combination technology ap-
6	plications, and integrated control system applica-
7	tions); and
8	(B) quantifying, demonstrating, and maxi-
9	mizing—
10	(i) the value of energy storage in the var-
11	ious use cases identified under subparagraph
12	(A); and
13	(ii) the energy storage services that could
14	be provided in those various use cases—
15	(I) individually; and
16	(II) in multiple or stacked services, in-
17	cluding the generation of multiple value
18	streams from integrated control systems.
19	such as microgrids;
20	(5) identifying, addressing, and reducing mar-
21	ket barriers that limit energy storage adoption, in-
22	cluding by—
23	(A) identifying wholesale and retail market
24	barriers;
25	(B) helping to streamline processes—

1	(i) to reduce the time required for
2	project completion; and
3	(ii) to lower interconnection costs; and
4	(C) facilitating increased deployment of en-
5	ergy storage across sectors, including facili-
6	tating—
7	(i) the deployment of residential, com-
8	mercial, and industrial applications; and
9	(ii) the deployment to low-income in-
10	dividuals and communities;
11	(6) advancing and validating the safety, reli-
12	ability, and performance of energy storage, including
13	by—
14	(A) establishing procedures for evaluating,
15	verifying, and reporting the performance of en-
16	ergy storage technologies, including the oper-
17	ational safety and usable life of energy storage
18	technologies; and
19	(B) refining existing or developing new in-
20	dustry-accepted codes, standards, and testing
21	procedures to specify desired performance pa-
22	rameters for energy storage services;
23	(7) mapping pathways for energy storage de-
24	ployment that increase the reliability, efficiency, se-

1	curity, and resilience of the electricity system, in-
2	cluding by—
3	(A) increasing the understanding of trends
4	in electricity system inertia; and
5	(B) assessing the ability of energy storage
6	to provide the technical services needed for
7	management of electricity system inertia;
8	(8) optimizing energy storage deployment—
9	(A) to increase the deployment of variable
10	renewable energy-generation technology and
11	electric transportation; and
12	(B) to support the optimal use of distrib-
13	uted and grid scale energy resources, including
14	assessing the use of energy storage technologies
15	to manage and optimize DERs—
16	(i) at different levels of market pene-
17	tration; or
18	(ii) within integrated control systems
19	or energy management systems, at dif-
20	ferent scales;
21	(9) advancing analytical resources to employ
22	storage technology effectively and profitably, includ-
23	ing by—
24	(A) using existing integrated resource
25	planning, transmission, and distribution design

1	tools and other resources to build staff capacity
2	for State regulatory authorities, State energy
3	offices, electric utilities, balancing authorities,
4	and Federal power marketing administrations
5	to assist in reducing the uncertainty and risks
6	relating to energy storage deployment;
7	(B) developing techniques for conducting
8	energy storage business case analyses; and
9	(C) developing end-state modeling of least-
10	cost solutions in scenarios in which—
11	(i) energy storage is deployed; and
12	(ii) 90 to 100 percent of electricity is
13	produced by renewable generation re-
14	sources;
15	(10) spurring an increase in the number of en-
16	ergy storage technologies that are manufactured
17	cost-competitively in the United States—
18	(A) through public-private partnerships;
19	and
20	(B) by reducing investment risk;
21	(11) identifying—
22	(A) critical and conflict materials issues re-
23	lating to energy storage technologies; and
24	(B) innovative, low-impact, and cost-com-
25	petitive methods for procuring energy storage

materials that address the conflict issues identi-
fied under subparagraph (A), including—
(i) materials recycling programs,
which may also have the effect of increas-
ing the life of batteries; and
(ii) novel methods for obtaining lith-
ium and other minerals domestically; and
(12) enabling responsible lifecycle management
of energy storage technologies through—
(A) conducting research on responsible re-
cycling of advanced battery materials and chem-
istries;
(B) encouraging the sustainable design of
new energy storage technologies; and
(C) investigating end-of-life and second-life
applications for advanced batteries.
(c) Priority.—In developing the program, the Sec-
retary shall pay special attention to energy storage needs
and opportunities that are relatively underdeveloped and
potentially transformative for the electric grid.
(d) Subprograms.—The program shall be comprised
of not fewer than 4 subprograms, including—
(1) a large-scale energy storage subprogram
with emphasis on large-scale energy storage systems,
including—

1	(A) electrochemical storage;
2	(B) pumped hydroelectric storage;
3	(C) mechanical storage;
4	(D) thermal storage;
5	(E) compression storage; and
6	(F) other technologies, as determined by
7	the Secretary;
8	(2) a distributed storage subprogram that fo-
9	cuses on distributed energy storage technologies and
10	applications, including existing assets and infra-
11	structure, such as electric hot water heaters and
12	thermal storage for space heating and cooling;
13	(3) a transportation electrification subprogram
14	that focuses on storage for and within electric vehi-
15	cles, including—
16	(A) light-, medium-, and heavy-duty pas-
17	senger, utility, transit, and fleet vehicles;
18	(B) vehicle-grid integration, including vehi-
19	cle-to-grid applications and time-varying pricing
20	signals; and
21	(C) charging infrastructure and related
22	networks and systems; and
23	(4) a responsible battery lifecycle management
24	subprogram that focuses on—

1	(A) recycling spent batteries, including all
2	chemistries of batteries; and
3	(B) designing new batteries for end-of-life
4	recycling.
5	(e) Cost Target.—
6	(1) In general.—The Secretary shall develop
7	cost targets (including technology costs, installation
8	costs, balance of services costs, and soft costs) for
9	energy storage across all types of energy storage
10	technology.
11	(2) Target update; subtargets.—Not later
12	than 5 years after the date of enactment of this Act
13	and every 5 years thereafter, the Secretary shall—
14	(A) increase the rigor of cost targets based
15	on—
16	(i) a technology-neutral approach that
17	considers all types of—
18	(I) energy storage;
19	(II) application and sector-spe-
20	cific use profiles; and
21	(III) energy storage deployment
22	scenarios, including individual tech-
23	nologies, technology combination use
24	profiles, and integrated control system
25	applications;

1	(ii) input from a variety of stake-
2	holders, including the stakeholders de-
3	scribed in subsection (i);
4	(iii) the inclusion and use of existing
5	infrastructure; and
6	(iv) the ability to optimize the integra-
7	tion of intermittent renewable energy gen-
8	eration technology and DERs; and
9	(B) establish cost subtargets specific to
10	technologies and applications selected by the
11	Secretary, taking into consideration electricity
12	market prices and what is required to be cost-
13	competitive in specific markets for electric grid
14	products and services.
15	(3) Default target.—During the period be-
16	ginning on the date of enactment of this Act and
17	ending on the date on which the Secretary first in-
18	creases the rigor of cost targets under paragraph
19	(2), the default cost targets to be achieved by the
20	date that is 10 years after the date of enactment of
21	this Act, shall be an 80-percent reduction in the per
22	kilowatt hour all-in installed cost of each energy
23	storage technology class, as determined under para-
24	graph (4).

1	(4) Energy storage technology classi-
2	FICATIONS.—
3	(A) In general.—Not later than 1 year
4	after the date of enactment of this Act, the Sec-
5	retary shall, based on input from the stake-
6	holders described in subsection (i), establish
7	categories of energy storage technologies for the
8	purposes of—
9	(i) updating the cost targets under
10	paragraph (2); and
11	(ii) assigning the default cost target
12	under paragraph (3).
13	(B) REQUIREMENTS.—At a minimum, the
14	Secretary shall establish the following energy
15	storage technology classes under subparagraph
16	(A):
17	(i) Electrochemical storage.
18	(ii) Pumped hydroelectric storage.
19	(iii) Mechanical storage.
20	(iv) Thermal storage.
21	(v) Compression storage.
22	(f) Scoping Report.—
23	(1) In general.—Not later than 1 year after
24	the date of enactment of this Act, the Secretary

1	shall submit to Congress a report that includes a
2	scoping plan for the organization of the program.
3	(2) Preparation of Report.—In preparing
4	the report under paragraph (1), the Secretary shall
5	confer with, and seek advice from, public and private
6	stakeholders, such as the stakeholders described in
7	subsection (i).
8	(g) Annual Report.—The Secretary shall submit
9	to Congress an annual report that describes the progress
10	of the program, including—
11	(1) a detailed summary of—
12	(A) actions taken to address each goal list-
13	ed in subsection (b); and
14	(B) the outcomes of those actions;
15	(2) the quantity of energy storage deployed;
16	(3) the administrative costs of the program;
17	(4) the total amount of program funds award-
18	ed, including a description, by State, of the amount
19	of funds awarded; and
20	(5) a discussion of the efficacy of the program,
21	including discussion of the metrics described in sub-
22	section (h).
23	(h) Metrics of Success.—The Secretary shall de-
24	velop metrics for evaluating the performance of the pro-

1	gram and the efficacy of the program in achieving the
2	goals described in subsection (b).
3	(i) Consultation.—In carrying out the activities
4	under this section, the Secretary shall consult with stake-
5	holders, including—
6	(1) other Federal agencies, including the Fed-
7	eral Energy Regulatory Commission;
8	(2) the National Laboratories;
9	(3) States;
10	(4) tribal governments;
11	(5) units of local government;
12	(6) electric utilities, such as investor-owned
13	electric utilities, publicly owned electric utilities, and
14	electric cooperatives;
15	(7) private companies, including energy tech-
16	nology manufacturers;
17	(8) third-party energy service providers;
18	(9) institutions of higher education; and
19	(10) nonprofit organizations.
20	(j) Personal Protections for Sensitive Per-
21	SONAL DATA.—
22	(1) Protecting privacy and security.—In
23	carrying out this section, the Secretary, the Admin-
24	istrator of the Energy Information Administration,
25	and the Secretary of Homeland Security shall iden-

1	tify, incorporate, and follow best practices for pro-
2	tecting the privacy of individuals and businesses and
3	the respective sensitive data of the individuals and
4	businesses, including by managing privacy risk and
5	implementing the Fair Information Practice Prin-
6	ciples of the Federal Trade Commission for the col-
7	lection, use, disclosure, and retention of individual
8	electric consumer information in accordance with the
9	Office of Management and Budget Circular A-130
10	(or successor circulars).
11	(2) Personal protections for sensitive
12	PERSONAL DATA.—
13	(A) IN GENERAL.—No Federal entity shall
14	request the creation, recording, or collection of
15	data identified to an individual person as a re-
16	sult of the program.
17	(B) Law enforcement require-
18	MENTS.—All law enforcement agencies intend-
19	ing to request access to data regarding elec-
20	tricity consumption or generation shall be re-
21	quired—
22	(i) to produce a probable cause war-
23	rant as a requirement for gaining access to
24	the data; and

1	(ii) to publicly report on the annual
2	number of requests by that law enforce-
3	ment agency for the data.
4	(k) AUTHORIZATION OF APPROPRIATIONS.—There
5	are authorized to be appropriated to the Secretary to carry
6	out this section—
7	(1) \$225,000,000 for fiscal year 2018;
8	(2) \$275,000,000 for fiscal year 2019;
9	(3) \$325,000,000 for fiscal year 2020;
10	(4) \$400,000,000 for fiscal years 2021 through
11	2024;
12	(5) \$325,000,000 for fiscal year 2025;
13	(6) \$275,000,000 for fiscal year 2026; and
14	(7) \$225,000,000 for fiscal year 2027.